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Abstract

The aim of our “Bureau d’études”, hereinafter “the project”, is to determine, within the frame of Solvency II, the
optimal method(s) to allocate the diversification advantage observed in financial portfolios. These methods are
to be implemented in R or VBA.
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Chapter 1

The frame

1.1 Goals of this project
First, here is an example to introduce the aims of this project. Let us consider two entities A and B. A has a
risk of 10 (the concept of risk will be explained after) and B has a risk of 5. But, with the diversification effect,
the coalition A+B has only a risk of 12. If 10 and 5 represent money that A and B have put aside, how could
the benefice of 3 (due to the diversification) be allocated? What is the optimal allocation?

We will try to give an answer to these questions in this paper. In order to do so, we will first introduce the
different allocation methods found in the various articles provided by William Gehin1, the actuary in charge of
this project, and in other relevant articles. Then we will compare these methods. After deciding which ones
will be relevant for the optimal allocation, we will implement them in VBA or R. The time of execution of the
algorithms shall be capped. Eventually, we will run the programs with actual data provided by William Gehin.
If the results are satisfactory, the program could be used by BNP-Paribas Cardif.

1.2 Notations
We will give here some general definitions used in this document.

A business unit (hereinafter b.u.) refers to a daughter company, which means a logical element or segment
of a company representing a specific business function. In our case, it’s a portfolio, which means a part of the
whole company. Here we have to allocate to each b.u. a part of the diversification profit. Sometimes, the term
"module" will be used instead of b.u.: the meaning remains the same.

In economic and financial worlds, the capital is a set of goods and wealth which is likely to bring more
revenue.

We usually name SCR the global Solvency capital requirement under Solvency 2, and SCRi the solvency
capital of each b.u.

1.3 About balance sheet

1.3.1 The own funds as fundamental stone of a balance sheet
Generally, we can define the balance sheet of a firm in three parts as following: the own funds (also named
owner’s equity) enabling to start up the business, that’s the fundamental stone of liabilities (and of the balance
sheet), the rest of liabilities and the assets [Figure 1.3.1].

A fundamental accounting rule is that the assets must equal the liabilities. Generally we can say that the goal
of a firm is to increase its assets, increasing also the liabilities. This augmentation makes profit for the company.

1Actuary in BNP-Paribas Cardif
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Figure 1.3.1: Simplified balance sheet

ASSETS LIABILITIES 

EQUITIES = Own Funds 

Others liabilities (debts, 
social debts, technical 
provisions…..) 

All Assets (stocks, bonds, 
real estate…) 

Level of SCR Level of SCR 
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Figure 1.3.2: Simplified balance sheet of an insurance company

ASSETS LIABILITIES 

EQUITIES = Own Funds 

Technical Provisions (noted 
Best Estimate in Solvency 2) 

All Assets (stocks, bonds, 
real estate…) 

Level of SCR Level of SCR 

1.3.2 Balance of an insurance company
Insurance industry is very particular due to its reversal of production cycle: it sells a product which price will be
known only in the future. That is why the insurance company must establish sufficient technical provisions to
ensure its financial soundness, and not too high to make profits. So the simplified balance sheet of an insurance
company reflects this particularity [Figure 1.3.2].

1.3.3 Our model of computation
Following the above model, in our framework we make hypothesis of constant technical provisions. That implies
that assets losses equal own funds losses. This is a very strong hypothesis because in fact technical provisions
are not always constant when the assets fluctuate: especially in the case of rate fluctuations, assets and liabilities
fluctuate (due to discount factors).

So here simulating asset losses is simulating own fund losses. This allows to quantify the level of SCR (see
§1.8 Solvency 2). In practice, insurance companies have more owner’s equity than SCR, especially in non-life
companies. Indeed, non-life insurance activities have to force important fluctuations. Besides, they cover shorter
periods (typically one year) than life insurance companies (see for instance [8]).

1.4 Capital allocation
The capital allocation is a procedure which decides how businesses and companies divide their financial resources
of capital to several projects and processes. It is an important way for firms and especially insurance companies
to manage risk. Indeed we can prove that the sum of the risk of different firm’s portfolios is larger than the
risk of the whole firm [2]. This diversification effect is seen during a previous step: the risk aggregation [Figure
1.4.1]. First of all, the allocation of capital requires the establishing of a pair made up of a risk measure and an
allocation method, such as (VAR, Shapley) or (TVAR, Euler).
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Figure 1.4.1: Link between risk aggregation and capital allocation

Aggregated SCR                
SCRag 

SCR module 1 
SCR1 

… SCR module 1 
SCRn 

Capital to be 
allocated             
K = SCRag 

Allocated capital 
module 1           

K1 

… 
Allocated capital 

module 2            
K2 

Step 1: Risks’ aggregation Step 2: Allocation of the capital 

1.5 Definitions

1.5.1 Risk measure
A risk measure ρ quantifies the level of risk of a random variable X, that could be a firm’s net worth at a specified
point of the future or a variation of equities between today and a future date. For this report, let us consider X
the SCR at the current date t:

X = SCR(t).

So, ρ(X) is a real number which determines the risk capital needed by the company to ensure that the SCR
of the firm will be acceptable - from the standpoint of a controller for instance. The choice of the risk measure
is important. Indeed, two different risk measures may provide two totally different interpretations. Besides, it
is common to expect a risk measure to satisfy some properties, defined below. In this case, the risk measure is
considered as coherent.

1.5.2 Coherent risk measure
Let us consider two bounded variables X and Y that represent a risk variable. For instance, we suppose here that
X and Y represent the SCR at the same moment t of two different b.u. A risk measure is coherent if it satisfies
the following properties:

Sub-additivity: For all bounded random variables X and Y,

ρ(X + Y ) ≤ ρ(X) + ρ(Y ).

This property guarantees that the risk of the holding is smaller (or equal in the case there is no diversification)
than the sum of the risk of each b.u. In other words, gathering two entities does not create extra risk.

Monotonicity: For all bounded random variables X, Y such that X≤ Y,

ρ(X) ≤ ρ(Y ).

This property implies, that if the loss X is always less than the loss Y, then X shall always be less risky than
Y.

Positive homogeneity: For all λ ≥ 0 and bounded random variables X,

ρ(λX) = λρ(X).

This property says the risk of b.u. multiplied by a number is equal to this number multiplied by the risk of
the b.u. This case is encountered with no diversification effect.

Translation invariance: For all α ∈ R and bounded random variable X,

ρ(X + ατf ) = ρ(X) + α.

Here τf is the riskless rate, which means a riskless investment doesn’t provide diversification.
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Figure 1.6.1: An example of VaR at a 5 % confidence level

1.6 Value-at-risk - VaR
Value-at-Risk is a widely used risk measure. For instance, under Solvency 2, the SCR is based on a Value-at-
Risk measure calibrated to a 99.5% confidence level over a 1-year time horizon. Here is an example given by
the European Comission: if VaR is measured over a one-year period at a confidence level of 99.5% then this
corresponds to the worst loss one would expect to occur in a single year over the next two hundred years. The
mathematical definition is:

V aRX(p) = F−1
X (p) = inf{x ∈ R|F (x)X ≥ p}, p ∈ [0, 1]

with FX the distribution function of the random variable X.
Proposition: VaR satisfies the properties of monotonicity, positive homogeneity and translation invariance.

Unfortunately, the sub-additivity is not satisfied by VaR. Thus, it is impossible to be sure to obtain a diversification
effect by using VaR. In practice, and it will be shown later in this paper, it is usually sub-additive under some
conditions. For theses affirmations, see for instance [9].

Let us give a simple example for a standard normal distribution: At a level of 99.5 %, 99.5 % of the realisations
of the random variable are under 2.576. That implies

V aRX(0.995) = 2.576.

Let us recall that a Gaussian distribution is defined over the real line, so it means that the realisations are
between −∞ and 2.576. For a random variable Y normally distributed with mean µ and standard deviation σ,
the result is, using the above properties of positive homogeneity and translation invariance:

V aRY (0.995) = µ+ 2.576σ.

1.7 Tail Value-at-risk - TVaR / Conditional Tail Expectation - CTE
TVaR and CTE are actually the same. The term TVaR will be used in the document. By its definition, it is
possible to know with VaR how often the worst cases will occur at some confidence level. The problem is that
it gives no information about theses worst cases. TVaR tries to provide more information by determining how
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much, on average, the worst cases will cost to the firm. Thus the name of "tail", because TVaR gives information
about the tail of the distribution. One mathematical definition is:

TV aRX(p) = E[X|X > V aRX(p)].

One can read this mathematical definition "at a level confidence p, TVaR of X is the expected loss knowing that
X is greater that V aRX(p)".

Proposition: The Tail value at risk is a coherent risk measure [10].
Let us give a simple example for a standard normal distribution: at a level of 99 %, the average of values over

99 % of the realisations of the random variable is 2.66. We notice that is not so far from VaR of level 99.5%.
We have estimated this value with a Monte-Carlo simulation, because quantiles of Gaussian distributions are

not easy to compute (VaR of level 99 % is 2.3263).
As far as that goes, for a random variable Y normally distributed of mean µ and standard deviation σ, using

the above properties of positive homogeneity and translation invariance, the result is:

TV aRY (p) = µ+ 2.66σ.

1.8 Solvency 2
Solvency 2 is a new European regulation which uniforms the restrictions of risk management for insurance
companies. It should become effective the 1st of January, 2016. Its main goal is to ensure the financial soundness
of insurance undertakings. In particular, insurers must have sufficient available resources to cover both a Minimum
capital requirement (MCR)and a Solvency capital requirement (SCR).

In case of diversification, this SCR has to be distributed. The aggregated SCR is calculated with the standard
formula provided by Solvency 2, given hereinafter. An intern model, justified and approved, may be used, and
consists in computing a level of own funds enabling the financial soundness in 99.5% of cases. In the present case,
BNP Paribas Cardif has decided to apply the standard formula. This formula consists in applying predefined
shocks to each asset classes, without including own risks of each firm (1.8.1). The correlation matrix is provided
by EIOPA (European Insurance and Occupational Pensions Authority) too.

Solvency 2 takes into account the diversification effects. In the standard model, the "square-root formula"
is used in order to calculate the aggregate solvency capital requirements (SCRag) for the BSCR and each risk
module market, life, health and non-life (SCRi)

SCRag =

√∑
i,j

CorrSCRi,j · SCRi · SCRj (1.8.1)

where CorrSCRi,j stands for the correlation between the modules i and j.
Although it is an actual problem for the firms, there is currently no specification about the allocation of the

capital due to the diversification effect within Solvency 2. Nevertheless, there are some examples on this subject
in some documents provided by EIOPA. The standard formula for the aggregation is used. For the allocation of
the benefits due to diversification, the proportional method is used. It is specified that it has its drawbacks. It
seems it has been used in order to simplify the computations. This paper will show other methods and will try
to give an answer to the problem of the allocation of the benefits due to the diversification effects.
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Figure 1.8.1: SCR’s structure
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Chapter 2

The methods

2.1 Preliminary
Before describing the different methods and their possible, or not, application in case of the capital allocation
problem, it is necessary to introduce some concepts and definitions.

Allocation principle
We will use the definition introduced by Denault [2]. An allocation principle is a function Π : A → Rn ,
where A is the set of risk capital allocation problems: pairs (N, ρ), with N a finite set of n portfolios and ρ a
coherent risk measure, that maps each allocation problem (N, ρ) into a unique allocation:

Π : (N, ρ) 7→


Π1(N, ρ)
Π2(N, ρ)

.

.

.
Πn(N, ρ)

 =


K1

K2

.

.

.
Kn

 such that
n∑
i=1

Ki = ρ(X)

where Ki stands for the allocated capital of the ith portfolio.

Coherent allocation principle
As above, we will use the definition given by Denault [2]: an allocation principle Π is coherent if it satisfies the
following properties:

1. No undercut ∑
i∈M

Ki ≤ ρ(
∑
i∈M

Xi) for all M ⊆ N,

If a portfolio joins the firm, it cannot be allocated more risk capital than it can possible have brought to
the firm. It could be compared with the sub-additivity of a risk measure.

2. Symmetry If by joining any subset M⊆ N\{i, j} portfolios i and j both make the same contribution to
the risk capital, then Ki = Kj . This means a portfolio allocation depends only on its contribution to the
risk within the firm.

3. Riskless allocation

Kn = ρ(αrf ) = α

if the nth portfolio is a riskless instrument.

All these properties have the goal to provide a reasonable risk allocation principle. They complete the fact
that it is necessary to have, according to Denault [2], a reasonable risk measure, aka coherent.
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Preliminaries on game theory
It is possible to define the game theory as the study of situations where players adopt various strategies to best
attain their individual goals [2]. In particular, cooperative game theory has teams as the central unit. Given a
set of agents (individuals), a cooperative game defines how well each coalition of can do for itself [11].

So, the goal of each player (equivalent to b.u. in our context) is to minimize the cost he incurs (the SCR in
our context). To calculate the cost, it is necessary to introduce the concept of a cost function:

c : 2N → R .

c associates a real number c(S) to each subset S of N, which is a finite set of n players.
We can see there are similarities between our problem and the cooperative game theory. Thus game theory

provides an excellent framework on which to cast the allocation problem. There have been a lot of studies of the
problem encountered here within the game theory area [2].

Strongly sub-additive game
A game is strongly sub-additive if its cost function c satisfies

c(S) + c(T ) ≥ c(S ∪ T ) + c(S ∩ T )

for all coalitions S ⊆ N and T ⊆ N .

2.2 The proportional method
This method is the simplest and the first one can think about. It aims to distribute the capital to the different
modules according to their own SCR determined with a certain risk measure ρ. So, greater is the SCR, greater
will be the allocated capital. Let us consider, for instance, two b.u. A1 and A2, with SCR1 = 40 and SCR2 = 10
respectively. Using the proportional method, A1 will receive 40/50 = 80% of the benefits. Thus, A2 will receive
10/50 = 20% of the benefits.

It can be easily implemented - as already noticed, it has been used in some papers of the EIPOA - but it does
not take into account the marginal effects of the ith module (aka the correlation with the other modules): this
method considers that its risk is the same should the module be considered alone or within a coalition. Let us
present the mathematical formula of the contribution of risk of the ith b.u. associated to the risk measure ρ:

ρprop (Xi/X)=
ρ (Xi)∑
j∈N ρ (Xj)

ρ (X)

with X = SCR(t) the SCR of the whole firm, Xj = SCRj(t) the SCR of the jth b.u.

2.3 The marginal method
The motivation of the use of this method is to consider the marginal effects of the ith module. In the proportional
method, the main element that was considered is ρ(Xi) for the ith b.u. In this method, we take into account the
difference between the risk of the coalition (aka the aggregated SCR) and the risk of the coalition without this
module (aka the aggregated SCR of the coalition that does not include the considered b.u.). In this way, the
marginal effect due to the ith b.u. is the key element to determine how much benefit should be allocated to this
module.

The example with the two b.u. A1 and A2 is quite trivial: If we consider that the aggregated SCR for the
coalition of the two b.u. is 42, then the marginal effect due to A1 is 42 − 10 = 32 and to A2 is 42 − 40 = 2. In
this case, 32

32+2 = 94% of the benefits will be allocated to A1. Thus 6% to A2.
The fact that only the effect of the ith b.u. with the main coalition is taken into account is the main limitation

of this method. Indeed, it does not consider any correlation between the different b.u. nor the effect on other
coalitions, as only the whole is taken into account. The use of the Shapley value helps to limit this drawback.

Let us present the mathematical formula of the contribution of risk of each single segment i associated to risk
measure ρ. To do so, it is necessary to introduce the mathematical definition of the marginal risk MRi due to
the ith b.u. representing the marginal effect described before. Let us consider an insurance company with N b.u.
and XN its risk. If a fraction h of the ith b.u. is removed, then the marginal risk on the insurance company due
to the ith b.u is:
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MRi(h,N) =
ρ(XN )− ρ(XN − hXi)

h

Thus MRi represents how much does the risk measure vary when the contribution of the ith b.u. varies. In case
of discrete case (a b.u. is or is not in the coalition) h equals 1. Otherwise (only a part of a b.u. can join the
insurance company) then h could be infinitely small.

From there, we can give the mathematical formula of contribution of risk using the marginal method (see for
instance [6]):

ρmarg (Xi/X)=
MRi (h,N)∑
j∈N MRj (h,N)

.

2.4 Shapley’s method (Shapley value)
In game theory, Lloyd Shapley proposed a solution for a fair and unique distribution in a cooperative game with
atomic players, i.e. in the discrete case. Let us consider a coalition of players that cooperates - meaning that the
players want to find the best coalition to get the biggest profit. This method could be seen as a generalisation
of the previous one. Indeed, the marginal effect that brings the ith b.u. will be studied within all the possible
coalitions. The problem is to determine the final distribution of generated surplus among the players. How much
each of them should reasonably expect? The Shapley value gives one solution to this question.

Let N be a set of n players and c be a cost (or characteristic) function, that associates a real number c(S) to
each subset S of N. In this case, c(S) describes the total expected sum of payoffs the members of S can obtain by
cooperation. It is usually assumed that c is sub-additive, meaning c(S ∪ T ) ≤ c(S) + c(T ), for all subsets S and
T of N with empty intersection. We have to define the term of "dummy player": a player i is dummy if there is
no diversification effect when he joins a coalition. So, he brings c(i) by joining any coalition S.

To give a unique solution, the Shapley value has to satisfy the following properties:

1. Symmetry: If i and j are two equivalent players, i.e. they make the same contribution joining the subsets
S that does not contain i nor j, then Π(N, c)i = Π(N, c)j .

2. Efficiency: For a dummy player we have: Π(N, c)i = c(i).

3. Additivity: Let us consider two games (N, c1) and (N, c2). Then we have:
Π(N, c1 +c2) = Π(N, c1)+Π(N, c2) , where the game (N, c1+2) is defined by (c1 +c2)(S) = (c1(S))+(c2(S))
for all S ≤ N .

Then it is possible to give an algebraic definition of the Shapley value for numerical computations. Let KSh

be the Shapley value of the coalitional game (N,c). Then we have

KSh
i = Π(N, c)i =

∑
S∈Ci

(s− 1)!(n− s)!
n!

(c(S)− c(S\{i}))

where i ∈ N, s = card(S) and Ci represents the set of all coalitions of N that contain i.
In the case of the capital allocation problem, it is possible to associate the portfolios of a firm with the players

of the game and the cost function c with the risk measure ρ. Unfortunately, using this method, Denault [2]
concludes that a convincing proof of coherent allocation falls short.

Indeed, the risk measure ρ has to be positively homogeneous. This implies (for the proof: [2]) that ρ is linear,
if c is strongly additive, a necessary property to insure the existence of the Shapley value. In this case, it is
impossible to see a diversification effect. Indeed, the linearity means that we have the equality in the relation
ρ(X + Y ) = ρ(X) + ρ(Y ).

There are also other drawbacks with the Shapley value: the computation requires the evaluation of c for the
2n − 1 coalitions (if we consider that a coalition should not be empty) so the task could take too much time, if
n is too large (from 3 [5]). Besides, the Shapley value deals only with the fact that the players are atomic. This
is not reasonable from an capital allocation viewpoint, as only a part of a b.u. can join a coalition (see the next
section).
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2.5 The Aumann-Shapley method (Aumann-Shapley value)
We now consider the game theory for fractional players. It means that it is now possible to consider fractions
of portfolios. The Aumann-Shapley value is the extended version of the Shapley value to non-atomic games. In
this case, the discrete cost function c studied before has to be replaced by a real-valued cost function r that is
less restrictive. To understand the utility of the Aumann-Shapley value, it is essential to introduce mathematical
concepts:

Fuzzy value We will use the definition proposed by Denault [2]: a fuzzy value is a mapping assigning to each
conditional game with fractional player (N,Λ, r) a unique per-unit allocation vector

Φ : (N,Λ, r) 7→


Φ1(N,Λ, r)
Φ2(N,Λ, r)

.

.

.
Φn(N,Λ, r)

 =


k1

k2

.

.

.
kn

,

with

Λtk = r(Λ).

In our case, the vector Λ represents the business volume of the b.u. We denote Λi the business volume of th ith
b.u. (aka its full involvement). The components of the vector k represent the per-unit allocation of risk capital
to each portfolio, k = (k1, ..., kn). r is a real-valued cost function. It is the extension of the cost function c seen
before and it can be assimilated as the risk measure ρ in the case of capital allocation.

Coherent fuzzy value Again, we use the definition of Denault [2] for the coherent fuzzy value: Let r be a
coherent risk measure. A fuzzy value

Φ : (N,Λ, r) 7→ k ∈ Rn

is coherent, if it satisfies the properties defined below, and if k is an element of the fuzzy core:

• Aggregation invariance: Suppose the risk measures r : Rn → R and s : Rn → R satisfy r(λ) = s(Γλ) for
some m× n matrix Γ and all λ such that 0 ≤ λ ≤ Λ componentwise. Then

Φ(N,Λ, r) = ΓtΦ(N,ΓΛ, s)

This means that equivalent risks should receive equivalent allocations.

• Continuity: The mapping Φ is continuous over the normed vector space Mn of continuously differentiable
functions r : Rn+ → R such that r(0) = 0.

Continuity is wanted to ensure that similar risk measures yield similar allocations.

• Non-negativity under r non-decreasing: If r is non-decreasing, in the sense that r(λ) ≤ r(λ∗) whenever
0 ≤ λ ≤ λ∗ ≤ Λ componentwise, then

Φ(N,Λ, r) ≥ 0.

This means that "more risk" implies "more allocation".

• Dummy player allocation: If i is a dummy player, in the sense that

r(λ)− r(λ∗) = (λi − λ∗i )
ρ(Xi)

Λi
,

whenever 0 ≤ λ ≤ Λ and λ∗ = λ except in the ith component, then
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ki =
ρ(Xi)

Λi
.

The dummy player, like the one defined for the Shapley value, is analogous to a riskless allocation.

• Fuzzy core: The allocation Φ(N,Λ, r) belongs to the fuzzy core of a game (N,Λ, r) if for all λ such that
0 ≤ λ ≤ Λ,

λtΦ(N,Λ, r) ≤ r(λ)

as well as ΛtΦ(N,Λ, r) = r(Λ).
Allocations obtained from a fuzzy core allow no undercut from any player and are considered fair.

The concept of a coherent fuzzy value is important, because it leads to a fair distribution. We remind that
a fair allocation is in particular an allocation that verifies for a b.u., that the greater the risk the greater the
allocation and that it is not possible for a b.u. to be allocated more risk capital than it can possibly have brought
to the firm.

Non-atomic games: It is possible to give a formula of the Aumann-Shapley value. It is an extension given by
Aumann and Shapley, and it is defined for the player i of N by the following formula:

φASi (N,Λ, r) = kASi =
1∫
0

∂r
∂λi

(γΛ) dγ ,

kASi could be interpreted as a per-unit cost that is an average of the marginal cost of the ith portfolio.

Lemma: If f is a k-homogeneous function, which means f(γx) = γkf(x), then: ∂f(x)
∂xi

is (k-1)-homogeneous.
In our case r is 1-homogeneous. Indeed, the risk measures VaR and TVaR are 1-homogeneous (see proof here-
inafter). Therefore, the previous formula is simplified and becomes:

φASi (N,Λ, r) = kASi = ∂r(Λ)
∂λi

.

We also have

KAS = kAS ∗ Λ,

which represents the amount of risk capital allocated to each portfolio.
It is now possible to introduce the allocation coefficient Ai for the ith b.u.:

Ai =
(
∂r(Λ)
∂λi

)Λi

r(Λ) , for i = 1, ..., n.

The Aumann-Shapley value as a coherent fuzzy value It is possible to prove (see [2]) the following
theorem: If (N, r,Λ) is a game with fractional players, with a coherent cost function r that is differentiable at Λ,
then the Aumann-Shapley value is a coherent fuzzy value.

It follows that the Aumann-Shapley value is the only linear coherent allocation principle, when the cost
function is differentiable at Λ.

Nevertheless, in practice, the most used risk measures are VaR (non-coherent) and the TVaR. Both of them
do not verify systematically all the previous axioms but it will be seen later that it is possible, under certain cir-
cumstances, to use them anyway. Besides, it is possible to obtain similar results with another method introduced
hereinafter: the Euler principle.

2.6 Euler principle
We can use the Euler allocation principle for any 1-homogeneous and differentiable risk measure. Let denote X
the portfolio-scale profit/loss which means: X =

∑n
i=1Xi.

We call economic capital the capital that will be used in order to absorb any loss caused by the portfolio, it
is denoted EC and we have EC = ρ(X). Let u = (u1, u2, ..., un) be the vector of weight factor which refers to
some dynamics in the model, so: X = X(u1, ..., u2) =

∑n
i=1 uiXi. We assume that there is some variation of u,

and so we introduce the function:fρ,X(u) = ρ(X(u)). We suppose that the distribution of X is fixed, then we can
simplify the previous formula and put: fρ(u) = ρ(X(u)).
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2.6.1 Risk distribution
The main question we try to answer to in this section is:"How much does the asset contribute to EC=ρ(X)?"

Definition : Let µi=E[Xi], with Xi = SCRi the risk of the ith asset and E[Xi] its expected value.

• The total portfolio Return on Risk Adjusted Capital (RORAC) is defined by:

RORAC(X) =
E[X]

ρ(X)
=
∑m
i=1 µi
ρ (X)

.

• The portfolio related to RORAC of the i-th asset is defined by

RORAC(Xi/X) =
E[X]

ρ (Xi/X)
=

µi
ρ (Xi/X)

,

where ρ (Xi/X) is the risk contribution of Xi to ρ(X)

• Risk contributions ρ (Xi/X), i ∈ [|1;n|], to the portfolio ρ(X) satisfy the full allocation property if:∑n
i=1 ρ (Xi/X)=ρ(X).

• Risk contributions ρ (Xi/X) are RORAC compatible, if there are some εi > 0 , such that

RORAC (Xi/X) > RORAC(X) implies RORAC(X + hXi) > RORAC(X) for all 0 < h < εi.

Proposition Let ρ be a risk measure and fρ be the function that corresponds to ρ. Assume that fρ is
continuously differentiable. If there are risk contributions

ρ (Xi/X), i ∈ [|1;n|],

that are RORAC compatible for arbitrary expected values µ1, ..., µn of X1, ..., Xn, then ρ (Xi/X) is uniquely
determined as:

ρEuler (Xi/X)=
∂ρ

∂h
(x+ bxj) |h=0=

∂fρ
∂Ui

(1, . . . , 1).

2.6.2 Risk measure formulas
In general, the formula of Euler’s method with the value at risk as risk measure is very difficult to estimate.
So, in the gaussian case we usually use a linear approximation. Risk contribution is then approximated by the
following mathematical formula:

V arEuler = µi +
cov(X,Xi)

σ2
X

(V aRα (X) + µX)

where µi represents the mean of Xi and µX is the mean of X.
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Chapter 3

Choice of the method

3.1 Choice of the risk measure
There is a large number of different risk measures, but we decided on purpose to present only two of them: VaR
(Value-at-Risk) and the TVaR (Tail Value-at-Risk). Indeed, in practice, their use is common in a lot of firms and
is required by regulations: Solvency II obliges the use of VaR while the TVaR is preferred by the Swiss Solvency
Test. In theory, neither of them is perfect. VaR is not sub-additive, therefore non-coherent. The TVaR explains
how much will cost on average the worst cases but its computation could not be easy. Both are not consistently
derivative as wished.

Nevertheless, in practical situations, the performance of VaR and the TVaR could be different of what it
would have been expected. For instance, one argument highlighting the TVaR is its coherence. But VaR could
be, in some cases, more sub-additive than the TVaR. For example, VaR is sub-additive for elliptic distributions.
Besides, it is sub-additive in most cases in the tail region, typically for α = 99%. This implies that VaR could be
coherent in applications (see [9] or [5]).

That is why we choose to use VaR. As a matter of fact, we did not have actually the freedom to decide
as BNP Paribas Cardif will have to follow the regulations required by Solvency II. Thus, we have to use VaR.
Nonetheless, as explained earlier, this risk measure does not seem to be relevant at first sight but it is in fact
usable for this purpose.

3.2 Choice of the allocation method
We have a choice between several allocation methods of capital. We have introduced and explained some of them
previously, such as:

• the proportional method

• the marginal method

• the Shapley method

• the Aumann-Shapley method

• the Euler method

It is quite obvious that some of them cannot be used to calculate a fair allocation of the benefit due to the
diversification. For the other, the choice is less trivial. Our conclusions are:

Both proportional and marginal methods are based on a very simplified principle of capital allocation that does
not consider various elements and factors that can influence and change the contribution to the risk associated
with each segment of the construction. So, according to these arguments, we consider that these methods were
not relevant for this purpose.

The Shapley method is a discrete method inspired by the theory of cooperative games. However, it requires
the computation of the cost function for 2n possible coalitions, which means a huge computation time. It will
eventually make the program running very slowly, which is not possible in our case because the speed of our
program matters. Besides, in practice, it is not well adapted, as the b.u. could consider not to enter fully in a
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coalition. For instance, it could choose to join the coalition at 60 % only. So, the Shapley method is not relevant
in our case.

After removing the 3 previous methods, there are only the Aumann-Shapley method and the Euler method
remaining. It turns out that they are equivalent, because in our case we are using VaR, which is 1-homogeneous.
Indeed, we saw that, using the Aumann Shapley value with a 1-homogeneous risk measure, we have:

kASi =
∂r(Λ)

∂λi

If we consider Λ = (1, ..., 1) (Let us recall that this vector represents the full involvement of each b.u.), λi = ui
and r = fρ, then

kASi =
∂fρ
∂Ui

(1, . . . , 1) = ρEuler (Xi/X).

This explains the fact that there is a priori no difference in using one of this method. It will be seen later
that this is not entirely true when implementing the algorithm.

There are other methods proposed in the literature. We decided here to discuss only the main ones and we
did not want to drown the reader in the middle of countless of methods.

17



Chapter 4

The algorithms

4.1 Significance of the results of the algorithm

4.1.1 Case of allocation with Aumann-Shapley method
4.1.1.1 Without correlation

For a better understanding, we start with a simple case of two independent random variables representing the
losses. The goal is to simulate a set of losses following a distribution specified for each portfolio. The random
variables need two main parameters: σ is the volatility of the portfolio, µ is its average yield.

Then we take VaR of level 99.5%, which gives the Solvency Capital Requirement for each portfolio (recorded
SCRi for the ith portfolio). That means the SCR enables the b.u. to manage 99.5% of cases.

As the portfolios are assumed to be independent (Their covariance is null, and we can anticipate a diversifi-
cation profit), we simply add up the both vectors of simulations, and VaR of level 99.5% provides us the SCR
for the entire firm (recorded SCRG)

Then we build the diversification profit (here as positive) from the difference between the sum of SCRi (before
risk aggregation) and the SCRG.

Before continuing, we must check if the benefit is in fact positive. Now we can compute the allocations of profit
for each portfolio (here we build positive ones). The Aumann-Shapley method guarantees that the allocation for
the ith portfolio is the derivative of VaR relative to λ (λ is the involvement of each portfolio). We make the choice
to compute the derivative manually, namely (f(X(1+h)+Y)-f(X+Y))/h, with h very small (0.0001 for instance)
and f = V aR here. This latter is the allocation for X.

For more portfolios, we simply add a "for loop" over i between 1 and N, where N is the number of portfolios.
Let us observe that simulating losses or values of portfolios is the same: Value of a portfolio X equals the

initial value X0 minus losses described by a random variable L: X = X0 − L. Then we see that simulating the
losses and taking VaR of level 99.5%, is the same as simulating a portfolio with the opposite distribution (because
X = X0−L, or the same distribution if the density respects parity), adjusting the average to X0 (actually adding
X0 to the average if initially different of 0) and taking VaR of level 0.05% (because 1− 0.995 = 0.005).

4.1.1.2 Including correlation

Empirically, we can discern three main cases of correlation:
The first one that is mentioned above, the case of non-correlation, in which the random variables are non

correlated, so that their covariance is null for two random variables. For many random variables, we use a
correlation matrix, so the diagonal is full of 1 (because the diagonal represents the correlation of each variable
with itself)and the rest of the matrix is 0. In this case, given the total independence of the random variables,
there will be a diversification profit. For instance we can think to a portfolio containing only stocks of a data
processing start-up, nd a second portfolio containing only options on brent. Even if actually, all markets are
correlated, we can imagine the independence of these two portfolios.

The second case is that of total correlation: the covariance is 1 for two random variables, and for more, the
correlation matrix is full of 1. In this case, the diversification profit is null. The simplest case is the following: two
portfolios containing the same stocks in proportion. Another example of strength correlation may be a portfolio
containing stocks of oil companies and a second containing options over brent.
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The last case is that of totally inverse correlation : In this case, the diversification profit is maximum. Actually
the losses of one are the gains of the other. We may think to a portfolio composed of stocks and a second composed
by "put options" over these stocks. A Put is a derivative in finance which inversely grows when the associated
stock falls.

You will therefore interpret the results for the diversification profit including that.

4.1.2 Case of allocation with Euler method
The goal remains the same: showing existence of a profit diversification, then allocate it between different b.u.

In this algorithm, we first simulate a correlation matrix. Then we decompose it by the Cholesky algorithm.
We simulate the different portfolios in a matrix, and we make the product of the Cholesky decomposition with.
After that, we attribute a weight to each portfolio. We compute each b.u. SCR (recorded SCRi), then for the
b.u. union, and the difference between the firsts and the second gives us the profit.
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Conclusion

The goal of this project has been to explore different methods to allocate the diversification profit. We could see
that existing methods are not trivial, except natural methods like the proportional, and creating a new method
is very difficult due to these two points. Hence, we have chosen the best existing methods (from our point of
view), to implement it. The subject of diversification profit and allocation is interesting, because it enables to
better understand or discover different financial, accounting and mathematical concepts. The implementation
phase has enabled us to face real problems, and apply the theory to them.

This project kept us in suspense during the whole scholar year, and has been for us a good training for our
future Master thesis. We have in particular seen that is important to verify mathematical hypothesis to apply
theorems, otherwise we could obtain aberrations, however in practice, hypothesis could not always be verified,
although we have to use the theorem anyway. Related with the precaution with which obtained results have to
be considered, and they have to be checked, e.g. by simulations.
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Appendix A

Euler Method R Code

1
2
3 ##EULER Method
4 ## Correlated Portfolios Case
5 ##We choose to work with Gaussian vectors to ensure subbativity of VaR
6
7
8 ###############****************CODE*****************#####################
9

10
11 #covariance matrix building, size p*p=n:
12 n=25
13 v=50*runif(n,0,1)
14 v
15 p=sqrt(n)
16 M=matrix(v,nrow=p)
17
18 M # covariance matrix
19
20 for(i in 1:p){
21 for(j in 1:p){
22 M[j,i]=M[i,j]
23 M[i,i]=M[i,i]+100
24 }
25 }
26 M # matrix becomes positive defined
27
28 # we use Cholesky decomposition
29
30 Cholesky=chol(M)
31 Cholesky
32
33 # Global portfolio building X_u:
34
35 # s times simulation of Gaussian distribution:
36
37 s = 1000000 # number of simulations
38 G = rnorm(p*s, 0, 1)
39 G = matrix(G,nrow =p)
40
41 X=t(Cholesky)%*%G

21



42
43
44 # weigth vector:
45
46 u = matrix(rep(1/sqrt(3), p))
47 X_u = t(u)%*%X # global portfolio
48
49
50
51 #Computation of each initial SCR i (for each b.u.):
52
53 VaR=matrix(NA,ncol=p)# risk measure used
54
55 for(i in 1:p){
56 VaR[i]=quantile(X[i,],0.995)
57 }
58
59 VaR
60
61 Scrg=sum(VaR)
62 Scrg
63
64
65 ## SCR computation for b.u. union (then including aggregation):
66
67
68 VaRG=quantile(colSums(X),0.995)
69 VaRG## value is lower than sum(VaR). That shows that VaR is sub-additive in Gaussian case.
70
71
72 ### Contribution of real risk contribution of each b.u. i with Euler method:
73
74 VaR_Euler = matrix(NA,ncol=p)
75
76 for(i in 1:p){
77 #Risk contribution to b.u. i:
78 VaR_Euler[i]=(cov(as.vector(X[i,]),as.vector(X_u), method="pearson")*(quantile(X_u,0.995)-
79 mean(X_u)))/(sd(as.vector(X_u))^2)
80 }
81 VaR_Euler
82
83 Somme=sum(VaR_Euler)# sum of p contributions
84 Somme # equals VaRG
85
86 ### Profit computation:
87
88 B=Scrg-VaRG
89 B
90
91 ## Profit allocation:
92 Allocation=matrix(NA,ncol=p)
93 for(i in 1:p){
94 Allocation[i]=VaR[i]-VaR_Euler[,i]
95 }
96 Allocation
97 sum(Allocation)## equals profit B
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Appendix B

Computation with Data from BNP using
Euler Method

98
99 These are the different correlation matrix that we received from BNP Cardif:

100 SCR_GlOBAL_COR=read.csv("C:\\Users\\Alexandre\\Documents\\BE\\matrices de cor\\
101 SCR_GLOBAL_COR.csv",sep=’;’,head=FALSE)
102 SCR_MARKET_UP_COR=read.csv("C:\\Users\\Alexandre\\Documents\\BE\\matrices de cor\\
103 SCR_MARKET_UP_COR.csv",sep=’;’,head=FALSE)
104 HEALTH_GLOBAL_COR=read.csv("C:\\Users\\Alexandre\\Documents\\BE\\matrices de cor\\
105 HEALTH_GLOBAL_COR.csv",sep=’;’,head=FALSE)
106 HEALTH_NONSLT_COR=read.csv("C:\\Users\\Alexandre\\Documents\\BE\\matrices de cor\\
107 HEALTH_NONSLT_COR.csv",sep=’;’,head=FALSE)
108 HEALTH_SLT_COR=read.csv("C:\\Users\\Alexandre\\Documents\\BE\\matrices de cor\\
109 HEALTH_SLT_COR.csv",sep=’;’,head=FALSE)
110 SCR_LIFE_COR=read.csv("C:\\Users\\Alexandre\\Documents\\BE\\matrices de cor\\
111 SCR_LIFE_COR.csv",sep=’;’,head=FALSE)
112 SCR_NON_LIFE_COR=read.csv("C:\\Users\\Alexandre\\Documents\\BE\\matrices de cor\\
113 SCR_NON_LIFE_COR.csv",sep=’;’,head=FALSE)
114 COR=read.csv("C:\\Users\\Alexandre\\Documents\\BE\\matrices de cor\\
115 COR.csv",sep=’;’,head=FALSE)
116 SCR_SCR=read.csv("C:\\Users\\Alexandre\\Documents\\BE\\matrices de cor\\
117 SCR_SCR.csv",sep=’;’,head=FALSE)
118 SCR=read.csv("C:\\Users\\Alexandre\\Documents\\BE\\matrices de cor\\
119 SCR.csv",sep=’;’,head=TRUE)
120 SCR
121 truc=quantile(rnorm(100000000),0.995)
122 truc
123 # 2,576
124 VAR=function(M){
125 + p=dim(M)[1]
126 + M=as.matrix(M)
127 + while((min(eigen(M)$values>0)==0)){M=t(M)%*%M}
128 +
129 + Cholesky=chol(M)
130 + Cholesky
131 + #Construction of the global portfolio:
132 + #Simulation :
133 + s = 1000000 # number of simulations
134 + G = rnorm(p*s, 0, 1)
135 + G = matrix(G,nrow =p)
136 + X=t(Cholesky)%*%G
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137 + #weight vector:
138 + u = matrix(rep(1/sqrt(3), p))
139 + X_u = t(u)%*%X # global portfolio
140 + # SCR for each segment i:
141 + VaR=matrix(NA,ncol=p)# the risk measure used
142 + for(i in 1:p){
143 + VaR[i]=quantile(X[i,],0.995)
144 + }
145 + VaR
146 + Scrg=sum(VaR)
147 + Scrg
148 + ## SCR for b.u. i union:
149 + VaRG=quantile(colSums(X),0.995)
150 + VaRG## this value is smaller than Sum(Var) which means that in this case the Var
151 is sub addtive
152 + ###the real contrubition for each segment i, using the Euler’s method:
153 + VaR_Euler = matrix(NA,ncol=p)
154 + for(i in 1:p){
155 + # the real contrubition for each segment i
156 VaR_Euler[i]=(cov(as.vector(X[i,]),as.vector(X_u), method="pearson")*
157 (quantile(X_u,0.995)-mean(X_u)))/(sd(as.vector(X_u))^2)
158 + }
159 + VaR_Euler
160 + Somme=sum(VaR_Euler)# Sum of p contributions
161 + Somme # it is equal to au VaRG
162 + ### bénéfice:
163 + B=Scrg-VaRG
164 + B
165 + ## Allocation of the benefice B:
166 + Allocation=matrix(NA,ncol=p)
167 + for(i in 1:p){
168 + Allocation[i]=VaR[i]-VaR_Euler[,i]
169 + }
170 + Allocation
171 + sum(Allocation)## it is equal to the benefice
172 + return(VaR_Euler)
173 + }
174
175 > Entité1=as.vector(SCR[,3])
176
177 SCR contains the integrity of the input array
178 > # we will change the correlation matrix SCR MARKET_UP_COR in covariance matrix
179 > ## Market risk
180 > market=c(Entité1[4],Entité1[7],Entité1[10],Entité1[11],Entité1[12])
181 > sigma=market/2.576# property of the value at risk
182 > sigma
183 > COV_MARKET=SCR_MARKET_UP_COR[-(3:4),-(3:4)]*(sigma%*%t(sigma))
184 COV_ MARKET is the new covariance matrix
185 > VAR(COV_MARKET)
186 > ## Risque LIFE
187 > life=Entité1[c(18,19,20,24,25,26,27)]
188 > life
189 > sigmalife=life/2.576
190 > COV_LIFE=SCR_LIFE_COR[-c(2,3,6),-c(2,3,6)]*(sigmalife%*%t(sigmalife))
191 > life
192 > ## Risque HEALTH SLT
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193 > slt=Entité1[c(31,32,36,40,41,42)]
194 > slt
195 > sigmaslt=slt/2.576
196 > COV_HEALTH_SLT=HEALTH_SLT_COR[-c(1,6),-c(1,6)]*(sigmaslt%*%t(sigmaslt))
197 > slt
198 > ## Risque HEALTH
199 > health=Entité1[c(30,43,46)]
200 > sigmahealth=health/2.576
201 > COV_HEALTH=HEALTH_GLOBAL_COR*(sigmahealth%*%t(sigmahealth)
202 > health
203 > ## Risque non life
204 > nonlife=Entité1[c(49,50,51)]
205 > sigmanonlife=nonlife/2.576
206 > COV_NONLIFE=SCR_NON_LIFE_COR*(sigmanonlife%*%t(sigmanonlife))
207 > nonlife
208 > ## RISk entité 1
209 > global=Entité1[c(1,14,17,29,48)]
210 > sigmaglob=global/2.576
211 > COV_GLOB=SCR_GlOBAL_COR*(sigmaglob%*%t(sigmaglob))
212
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Appendix C

Aumann-Shapley Method R Code

C.1 Simple case of two portfolios without correlation
213
214 #Aumann-Shapley Method
215 #VaR derivative according to lambda[i]
216 # Simple case of Gaussian distribution for losses for two portfolios supposed independent
217 ######################
218 alpha=0.995 #level of VaR
219 sigma1=4;sigma2=4
220 mu1=0;mu2=0 #averaged yields
221 # (so (-1)*Drift because negative #loss=gain).
222 X0=100;Y0=200;P0=X0+Y0 #initial of each portfolio at t=0
223
224
225
226 n=100000 #number of simulations
227
228
229 X=rnorm(n,mu1,sigma1) #Potential losses #for portfolio X
230 Y=rnorm(n,mu2,sigma2) #losses for Y
231
232 SCR1=quantile(X,alpha) # worst loss for X then for Y
233 SCR2=quantile(Y,alpha)
234
235 #X and Y are supposed independent, so we sum vectors
236 # of N simulated losses, then we take
237 #the worst value of 99.5 % of cases
238 SCRG=quantile(X+Y,alpha)
239 SCR1;SCR2;SCRG
240
241 #"Diversification profit"
242
243
244 SommeSCR=SCR1+SCR2 #we sum SCR of each
245 #b.u. "before diversification"
246 SommeSCR
247
248 B=SommeSCR-SCRG #DIVERSIFICATION PROFIT (we want it >0)
249 B
250
251 #ALLOCATION of DIVERSIFICATION PROFIT
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252 #Derivatives of VaR (Aumann-Shapley method)
253 h=0.00001 #derivating step
254 all1=(1/h)*(quantile((X0-X)*(1+X0/P0*h)+(Y0-Y)*(1-X0*X0*h/(Y0*P0)),1-alpha)-
255 quantile(X0-X+Y0-Y,1-alpha))
256 #original formula: allocation computing is about portfolios then:
257 #(1/h)*(P0-quantile(X+Y,0.95)-
258 (P0-quantile(X*(1+h)+Y,0.95)), P0
259 # simplify by themselves.
260 all2=(1/h)*(quantile((Y0-Y)*(1+Y0/P0*h)+(X0-X)*(1-Y0*Y0*h/(X0*P0),1-alpha)-
261 quantile(X0-X+Y0-Y,1-alpha))
262 #the sum of weights must always equal 1
263
264 all1;all2
265
266 all1+all2 #this must equal the profit B
267 B-(all1+all2) # must be near 0
268
269
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